人类希望通过人工智能,可以从机械且繁琐的工作中解放出来,然而现实是,想要挖掘海量数据,实现判断、预测等能力,很大程度上还需要依靠人的经验去完成”特征工程“的工作。特征工程是一项庞大且耗时的工程,其中涉及到了模型选择、数据处理、泛化等多方面的机器学习知识,以及需要对业务有一定的理解,目前该领域人才的匮乏很难与大数据的快速发展相匹配。
简单来说,特征是数据抽取出来的对结果预测有帮助的信息;特征工程是为了使特征在机器学习算法和模型上发挥更优效果的过程,该过程往往需要数据科学家人工地找出
[登陆后可查看全文]